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THE SMATTERING MATRIX IN A WA~~GUI~E WITH ELASTIC WALLS* 

YU.A. LAVROV and V.D. LUK'YANOV 

The spectrum of normal waves is studied and the scattering matrix is 
determined fox a planar waveguide with elastic walls and with an elastic 
semi-infinite plate situated within it. The mechanical mode of behaviour 
of elastic plates is described using the general-type differential 
operators. Problems of this type belong to the class of the boundary 
contact problems /l, 2/. The unique solvability of these problems requires 
the formulation of additional boundary contact conditions describing the 
mechanical behaviour of the edge of the semi-infinite plate situated 
within the waveguide. The regularization of the integrals appearing when 
the general-type boundary contact conditions are satisfied is indicated. 

1. Formulation of the problem. We seek a solution of the following two-dimensional 
homogeneous Helmholtz equation: 

d2Pi0.G + @P':uy? + li?P c lj (l.lJ 
in the strip --m;~<~- =,hp<y <h, with a cut Y=O,.Z>O (see the figure), describing the 
distribution of the pressure P(z,y) when the system is excited by a given acoustic field PO(z,~). 
Here k= O/C is the wave number, o is the angular frequency; here and henceforth the dependence 

of the wave processes on time, chosen here inthe form erp(--iof], 
is neglected; c is the velocity of sound in the medium. 
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and it executes antismtric oscillations described by the _____------- 
boundary conditions (z >O) 

Condition (1.3) describes the equality of the displacements of the upper (lower) surface 
of the plate u (z) = (pod)-la~ (s, -&-o)/ay, p0 is the fluid density. We note that condition (1.3) holds 
on the continuation of the plate median I= O,z<O, as well as the condition thattthe pressure 

is continuous 
P (t,-t- 0) = P (I, -0). 3 < 0 (1.5) 

Here M,j(-a*/az2), Mp;(-a*,a~2)(j= f,2,3) are polynomials whose coefficients depend on the 
mechanical properties of the elastic materials of which the waveguide walls are made. 

We illustrate all this by describing the form of the differential operators for different 
types of the waveguide walls: M,,= 1, &fsjs 0 (perfectly rigid walls) ; Mij= 0, Msj= i (perfectly 
pliable walls); Ml,= fltc%2-; K,=, MO1 = &d/Nj (elastic membranes) ; My. = @ia+ - x2', M*j = &dlD; 

(elastic, flexurally oscillating plates). Here III is the wave number of the waves within the 

membrane, Kj=p;lN,,pj is the linear density of the membrane (plate), Nj is the tensile force 
in the membrane, Xj is the wave number of the flexural waves in the plate situated in vacua, 
and x,= pjo~lDj,D, is the flexural rigidity of the plate. 
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we note that in the case of elastic plates the order mlj of the polynomials hf,j is 

greater than the order Gj of the polynomials Mlj. 
me solution P(Z,Y) sought satisfies the principle or limit absorption (the case of real 

k is regarded as a passage to the limit as Imk+O), continuously in the region in question 

up tothe boundaries, and satisfies the Meixner condition "on the edge". 
The problem has a unique solution for the Dirichlet conditions (perfectly pliable walls), 

for the Neumann conditions (perfectly rigid walls) and for the conditions of third kind on the 

ray y=o,~>O- If at least one of the numbersm,jand n~.,~is different from zero, then the 
solution which we call the general one /l/, loses its uniqueness and contains a number of 
arbitrary constants. The values of these constants are obtained from the requirement that 
additional boundary contact conditions /2, 3/ must be satisfied. The conditions specify the 
mechanical mode of behaviour of the edge of the semi-infinite plate. 

For example, an elastic membrane whose edge is clamped, the boundary contact condition has 
the form dP(SO,O)/@= 0. In the case of a flexurally oscillating elastic plate whose edge is 
clamped, the conditions that the displacement and the angle of rotation of the plate should be 
zero, aP (TO, O)/ag = o and a2P (GO, 0)/a& = 0, both hold. If the edge of the plate is free, then 
the boundary contact conditions specify the fact that the bending moment and the shear force 
aJP (+O, o)layaS = 0 and a’P (+O, O)/aya$ = 0 are both zero. 

2. Spectrum of normal waves in the waveguide. We shall seek the normal waves 
Q(I,~) of the right waveguide (z> 0) in the form Q(z.y)= ~,G,(h*,y)@. Here and henceforth we 
have for all functions depending on ~.j= 1, if O<y<h,, j= 2, if h,< y<O. The function 

G, (~'. y) = Mlj (h*) ch y (Y - h,) - (-l)'~,, (h*) y-'sh y (Y - h,), 
y = (1_? - kZ)VI 

is chosen in such a manner, that conditions (1.1) and (1.2) are satisfied for Q(z,I/). 
The boundary conditions (1.3), (1.4) lead to a system of linear algebraic equations for 

the constants 
A&, (X2) - A&, (hz) = 0 (2.1) 
A, IM,, (A?) L, (A'? + Jr,, O.? T, (AZ)1 - A,M,, (AZ) T, (A*) = 0 

(Lj (~~) = aG, (X’, O)i~l,. T, (i.?) = Gj (A’, 0)) 

The condition for a non-zero solution of system (2.1) to exist yields a dispersion equation 
for determining the spectrum of wave numbers of the normal waves of the right waveguide 

A> (A*) = M,, (A*) L, (I?) Ls (I?) + M,, (V) A2 (12) = o (2.2) 
(A2 (P) = I', 0.:) L, (A') - T, (A*) L, (V)) 

The function A,@.?) is even; therefore we can limit ourselves, when studying the roots of 

(2.2) (Wave numbers Of the normal waves of the right waveguide), to those roots which lie in 
the upper half-plane of the complex variable % when Im k>O. 

For the left waveguide (z<O), not containing a middle plate, the dispersion equation for 
the wave numbers of the normal waves can be obtained from (2.2), provided that we write formally 

.n ., 
M,, (/.-) = 1, M,, (L-J = u. The corresponding dispersion equation has the form 

A2 (P) = 0 r2.3) 
and its root separate into two groups. The roots in the first group p,, form a denumerable 
set and approach asymptotically, as 1 increases, the roots of the dispersion equation 
for a waveguide of width h,- h,, with rigid walls 

The process can be observed if we transform Eq.(2.3) to the form 

12.4) 

The right side of Eq.(2.4) tends to zero as I%l--0s; therefore for sufficiently large 
] i,] we arrive at the dispersion equation for a waveguide of width h, - h, with rigid walls 
y th y (hl - h2) = 0. We shall call the roots belonging to this group the waveguide roots. The 
roots belonging to the second group can be conveniently studied under the assumption that the 
density of the acoustic medium is low. The root approach the roots of the polynomials AlnO.*), 
Ml, (A*) which represent the wave numbers of theplates in vacua. We shall call them the roots 
belonging to zero group and denote them by bor,z= $.Z,...,m,,+ +. 

The roots of the dispersion equation of the right waveguide (2.2) are dealt with in exactly 
the same manner. When the density of the acoustic medium decreases, the zero group of roots 
aof (1 = 1, 2, . . .- ml1 + ml2 i- ni13) approaches the set of roots of the polynomials M,, (As), M,, (A*), I,,. 
The waveguide group of roots splits into two subgroups (I-~) 

all-i [($k?;"', aSl -i [($)'_kl\"* 
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Henceforth, we shall assume for convenience that i.,, i,,, (1 = I, 2, ,j denote the set of roots 
of the functions A,(?."),A,(L?) beginning, respectively, with real numbers (when lurk= 0). 

3. General salution of the problem. We will consider the diffraction of normal 
waves of the right (leftl waveguide by a semi-infinite plate within the waveguide. We write 
the pressure field in the form 

P (2, SI) = PC0 ix> Y) + pi (i. 8) 
where 

P, (2, y) := (E &,&‘*Go (k,,“. y) rip (--'A,,& 
G$ (12, y) = G; (h", Y)JL, (ii?)) 

is the normal wave travelling along the right waveguide from the direction of positive _r, with 
wave number n, P1(r,!i) is the diffraction field generated by it. The factor (E (h,,))-'1~ is chosen 
so that the energy flux aveaged over a period, transported by the propagating normal wave with 
number n (Imi.,, = 0 when Imii= 0) is equal to one. The flux represents the sum of the energy 
fluxes averaged over a period, transported by this wave along the acoustic medium II,, i.e. 

and the energy fluxes transported along the elastic plates. When the plate is oscillating 
flexurally, the fluxes are computed from the formula 

where It, = 0. 

We shall seek the diffraction field in the form of a F'oGrier integral 

for which tie conditions (l.l)-(1.3) hold automatically. 
satisfy the conditions (1.4) and (1.5) we arrive, using standard methods, at theinhomogeneous 

Riemann problem for anaiyic functions, Using known procedures /4, 5/ to solve it, we obtain 
the general solution of the problem 

where f,,(k) is an n~~~--i-th degree polynomial; the coefficients of the polynomial depend cn 
x,,, and will be determined in Sect.4 and qLiYi) is the res-lt of factorizing the function 
'p (A) = A, (?.*)iAz (i.:). The functions g-(L) and q&r-i.) are analytic in the upper and lower half-plane 
of the complex variable i, respectively 

I=1 4 

(F-p, = “ill - n,,, ““7 1,113. llig -= 7n11 f rnl2. q (h. EC) = 1 + Xip) 

and we have r(' (2.) == 0 (i,m*V-'S), /L I- DS in the upper half-plane. 
The problem of the excitation of the diffraction field by a normal wave arriving along 

the left waveguide is solved in exactly the same manner. 

4. 3oundary contact conditions. To find the coefficients "11 of the polynomial 

f,(Z) which aret so far, arbitrary, we must specify mS3 boundary contact conditions determining 
the mechanical mode of behaviour of the semi-infinite plate edge. The general form of these 

conditions is 

Here F,$ (---i&&q and F,i (--itcar) are polynomials whose coefficients are determined by the 
mechanical properties of the system. 

Writing the explicit expansion o1 i the polynomial &(Q in powers of h 
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and imposing the boundary contact conditions (4.1) on the field P(z,Y) we obtain, after a series 
of transformations, the following system of linear algebraic equations for determining the 
boundary contact constants om (m= 0,1,...,mia- 1): 

where 

(4.2) 

(4.3) 

A formal passage to the limit in (4.2) and (4.3) leads to divergent integrals. To regularize 
the integrals in (4.2) and (4.3) we will require that the following relation holds (its meaning 
was discussed in /2/) : 

F,, (i. .lI:, (;.:I - Y:i (i.) .VI,3 (i.2) = 0 (i.'"'ll) ('1.4) 
1 i. 1 - X (I: 1. ". 17113) 

specifying the relation connecting the boundary and boundary contact operators. Then 

We regularize I,,, in exactly the same manner. 

5. The scattering matrix. The scattered field generated by the normal wave arriving 
along the left waveguide is sought in the form of the Fourier integral (3.1) using the same 
methods as before. 

Expanding the integrals in (3.1) and in the analogous integral for the case when the field 
within the waveguide is generated by the normal wave of the left waveguide, in the sums of 
residues, we construct the transmission matrix SQ(SJ) and the reflection matrix SJJ(P) of the 
normal waves generated in the left (and respectively the right! waveguide. The dispersion 
matrix 

is composed of blocks with elements 

where 

The coefficients of the polynomial g,,(h) = b, + b,i. T . + b,,,_li.m~~-l should be found from the 
system of algebraic equations 
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The contour F circumvents from below all poles of the integrand lying, when 1111 k>O, 1:: 
the upper half-plane of the complex variable i, except for h= X2,,. 
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